

Event 1 – Buy, use & control energy

- Putting energy into context Alan Draper
- Home energy conservation Alan Draper
- Energy controls in the home Andy Hannah

ADAPT

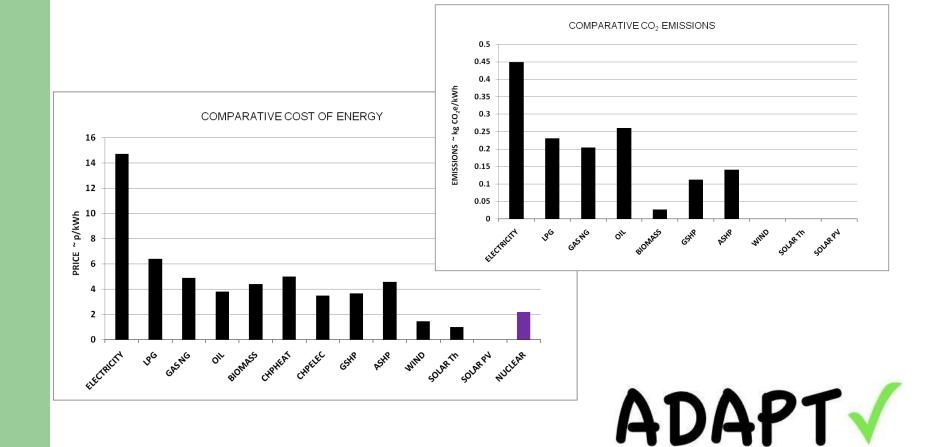
• Buying energy wisely – Chris Knibbs

ENERGY EFFICIENCY in THE HOME

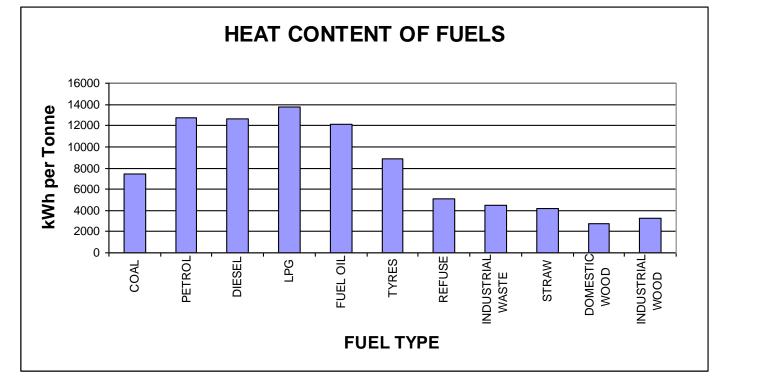
Alan Draper ADAPT Energy Team

Scope

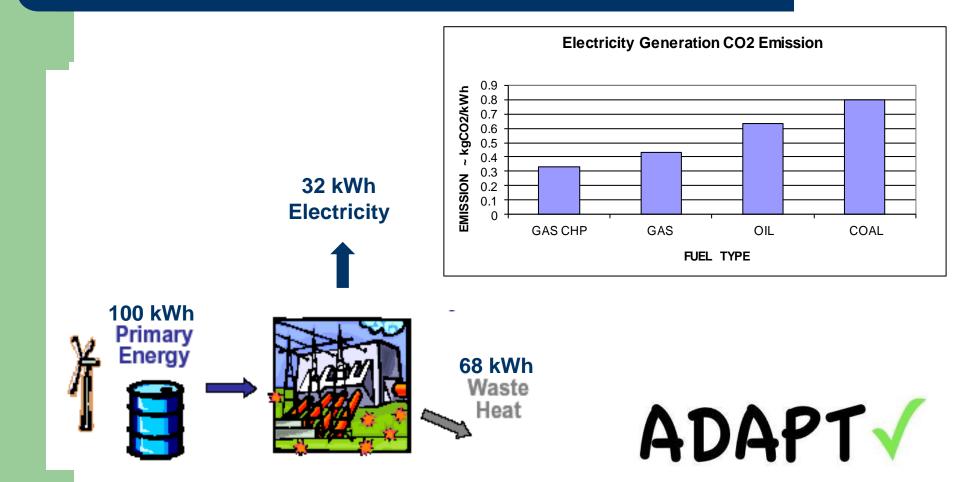
- energy sources and uses
- appliances ~ variety and loading,
- heating system performance
- energy conservation
- buying energy strategies
- energy management and control


Factors

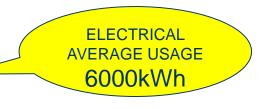
- Carbon dioxide rise ~ CO2
 - temperature rise
- Climate change
- Vulnerability ~ globally & national
 - · severe weather, wind, rain
 - · sea levels rising
 - drought
- Global Pollution
- Increasing energy costs
- Foreign political strength
- Taxation and Legislation



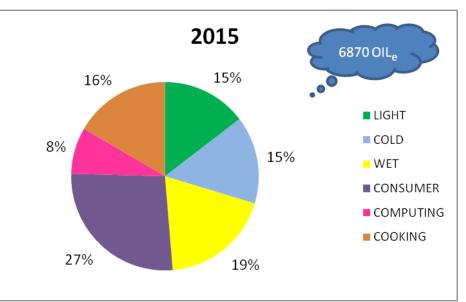
Energy source characteristics

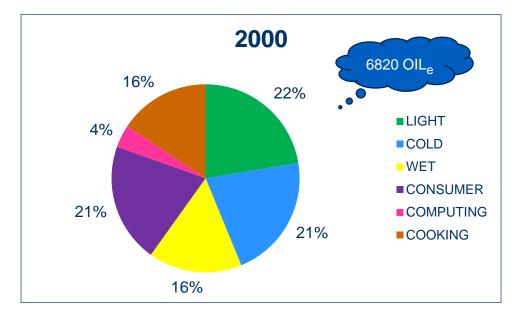


Comparison of Fuel Density


Supplier selection

Energy sources


Energy & proportional usage in the home (usage groups)


- Heating
- Bathing and showers
- Lighting
- Washing & drying
- Cooking & dish washing
- Entertainment (TV, Music, Home Cinema, etc)
- Office work (Computers, Printers, Chargers, etc)
- Other
- Appliances ~ relative energy loadinglink

22600kWh

Electricity used in the Home

Reduce consumption

Heating systems in your home

 Single point heating 	
Wood burners and stoves	66 – 84% as new
Electrical and gas	<mark>100%</mark> and 80 – 90%
resp.	
 Central Heating boilers 	
Gas, oil and wood burning boilers	80 – 90% as new
 variation in efficiency 	
 conventional boilernon-condensing 	80%
condensing boiler	90%
old non-condensing boiler	
emissions typical	
non-condensing	5000kg CO ₂
condensing	
other considerations	
 space and installation requirements 	Ληλρτ
 fuel storage or supply requirements 	ハレハト

Source: Building Services Handbook

Boiler comparison ~ running costs pa

BOILER TYPE	SEMI DETACHED	DETACHED	FLAT	EFFICIENCY
OLD HEAVY UNIT	£1204	£1705	£779	55%
OLD LIGHT UNIT	£1019	£1442	£659	65%
NEW NON CONDENSING	£849	£1202	£549	78%
NEW CONDENSING	£744	£1053	£481	89%

Source: SEDBUK

Boiler savings potential

OLD BOILER RATING	SEMI DETACHED	DETACHED	DETACHED BUNGALOW	MID TERRACE	MID FLOOR FLAT
G (<70%)	£215	£350	£180	£175	£95
F (70 - 74%)	£145	£240	£125	£120	£65
E (74 - 78%)	£115	£190	£95	£95	£50
D (78 - 82%)	£83	£140	£70	£70	£35

Source: Energy Savings Trust

ADAPT

Savings based on upgrading an old boiler

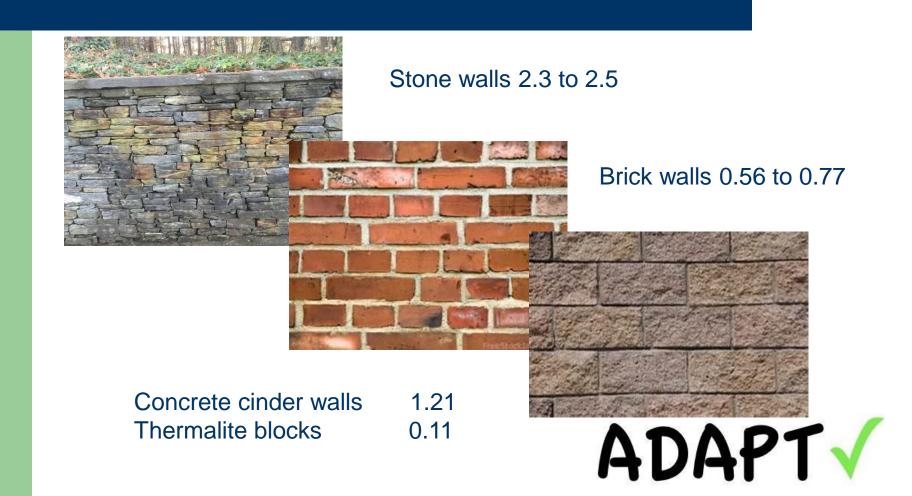
- 'A' rated condensing boiler
- Programmer
- Room thermostat
- Radiator TRVs

Heat Energy

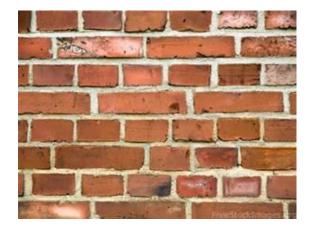
- Energy for heating building space
- Energy for heating water
 - Building fabric losses
 - Insulation ~ home and water tank
 - Air tightness
 - Waste Heat Recovery
 - Mechanical Ventilation Heat Recovery

Eliminate waste ~ Insulate

Thermal Properties (λ)&(u-value)


- Thermal conductivity
 - the rate at which material will pass heat ~ Watts/mK
- U-value

•the quantity of heat that will pass through 1m² of material ~ Watts/m²K


Examples of λ	
Steel	60.00
Glass	1.00
Roof tile	1.30
Brick	0.56
Mineral wool	0.037
Celotex PIR	0.022

Walls ~ thermal properties (λ)

Walls ~ thermal properties (u-value)

Solid brick walls (220mm)	2.19
Cavity brick walls	

- no cavity insulation (255mm) 1.50
- with cavity insulation(255mm)
 0.60

Example based on 10m² of external wall & An external temperature of minus 5°C

Heat Loss

Windows ~ thermal properties (U)

Heat losses

• 150Watts ➡ 100 ➡ 57 ➡ 52 ➡ 47Watts

Based on a 1m by 1m window

Thermal Performance of Insulation Source: Energy Saving Trust

Key to environmental ratings ¹	Thermal resistance											
of insulation materials	The thermal resist	ance (R) of an insul	ation laver is calcula	ted from:								
Green Guide A rating	The thermal resistance (R) of an insulation layer is calculated from: $R = \frac{l}{\lambda} \text{where } l \text{is the thickness in metres and}$ is the thermal conductivity in W/mK											
Green Guide B rating	$h = \frac{1}{\lambda}$ λ is the thermal conductivity in W/mK											
Green Guide C rating	To compare two i	nsulants with different	ent thickness and th	ermal conductivity,	calculate the							
Not yet assessed	value of R for each	h. The one with the	higher value gives	the better thermal	performance.							
Insulation materials ³	Thermat-conductivity ² (W/mK)											
	0.02	0.03	0.04	0.05	0.06							
Expanded polystyrene (EPS)												
Extruded polystyrene (XPS) with CO ₂												
Polyurethane (PU) with pentane												
Foil-faced polyurethane (PU) with pentane												
Polyurethane (PU) with CO ₂		Real Property la			8.4.8							
Polyisocyanurate (PIR)												
Foil-faced polyisocyanurate (PIR)												
Polyester fibre												
Phenolic foam (PF)	1			and the second								
Foil-faced phenolic foam (PF)					1.1.1							
Mineral wool (glass) [≤ 160kg/m³]												
Mineral wool (glass) [>160kg/m³]												
Mineral wool (glass) [< 150kg/m³]												
Mineral wool (glass) [> 150kg/m³]												
Sheep's wool												
Cotton												
Cellulose fibre (recycled)												
Cork												
Vermiculite												
Perlite (expanded) board												
Wood fibre (WF)				the Design of Lot of L								
Cellular glass (CG)												
Straw Bale					and the second second							
	0.02	0.03	0.04	0.05	0.06							

ADAPT

Thormal resistance

Insulation applications

Information available from Source: Energy Saving Trust

	Constructions												
Calculating U-values		Roofs					Walls					Floors	
U-values of building elements should be calculated in accordance with BS EN ISO 6946 and BS EN ISO 13370	Insulation on pitch	Ceiling insulation	Flat roof	Internal insulation	External insulation	Cavity (full fill)	Cavity (partial fill)	Timber frame	Steel frame	Panel	Solid concrete	Suspended beam & block	Citerandad timhar
Insulation materials ³	the second									ost comr		is. So the	fact
Expanded polystyrene (EPS)													
Extruded polystyrene (XPS) with CO2													
Polyurethane (PU) with pentane													
Foil-faced polyurethane (PU) with pentane													
Polyurethane (PU) with CO ₂													
Polyisocyanurate (PIR)													
Foil-faced polyisocyanurate (PIR)													
Polyester fibre													
Phenolic foam (PF)													
Foil-faced phenolic foam (PF)													
Mineral wool (glass) [≤ 160kg/m³]													
Mineral wool (glass) [> 160kg/m³]													
Mineral wool (glass) [≤ 150kg/m³]													
Mineral wool (glass) [> 150kg/m³]													
Sheep's wool													
Cotton													
Cellulose fibre (recycled)													
Cork													
Vermiculite													
Perlite (expanded) board													
Wood fibre (WF)													
Cellular glass (CG)													
Straw bale													

Insulation applications

	Constructions												
Calculating U-values		Roofs				Walls					Floors		
U-values of building elements should be calculated in accordance with BS EN ISO 6946 and BS EN ISO 13370	hsulation on pitch	Celing insulation	flat roof	Internal insulation	Externalinsulation	Cavity (full fil)	Cavity (partial fill)	Timber frame	Steel frame	Parel	Sdid concrete	Suspende d be am & block	Suspende d timber
Insulation materials ²	Most common applications. The coloured cells indicate only the most common uses. So the fact that a cell is blank does not necessarily mean this type of insulation is not used for this application.												
Expanded polystyrene (EPS)													
Extruded polystyrene (XPS) with CO2													
Polyurethane (PU) with pentane													
Foil-faced polyurethane (PU) with pentane													
Polyurethane (PU) with CO ₂													
Polyisocyanurate (PIR)													
Foil-faced polyisocyanurate (PIR)													
Polyester fibre													
Phenolic foam (PF)													
Foil-faced phenolic foam (PF)													
Mineral wool (glass) [< 160kg/m²]													

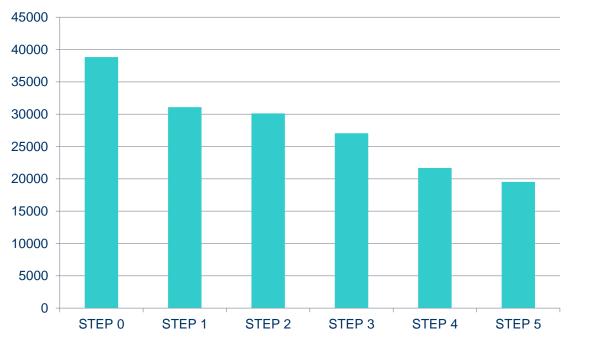
Source: Energy Saving Trust

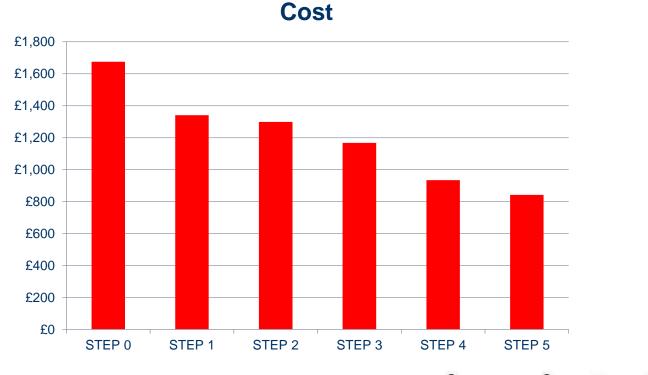
ADAPT

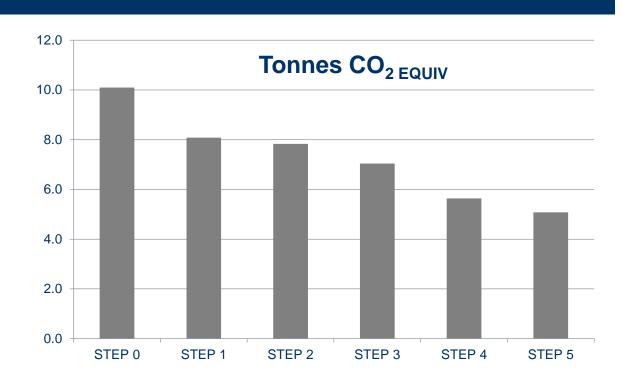
Reducing waste 1

Heat demand in a home is needed to offset losses

- i.e. wasted energy/money;
- ventilation controlled and uncontrolled......20 to 40%
- heat passing through the fabric of buildings ...30 to 70%
- heat passing through windows......14 to 30%
 Example:


A semi detached home 3 bedrooms 160m² floor area Illustrating effects from changes in the 3 areas above.


Ambient temperature minus 5°C (Htg & DHW)


	HOUSE	WALLS	ROOF	WINDOWS
U -Values	4 Bedroom, 158m ² modernised	Solid brick	Insulation	Single glazing wood frame
STEP 0	Roof uninsulated	2.19	2.50	4.00
STEP 1	Roof insulation added 100mm	2.19	0.40	4.00
STEP 2	Roof insulation added 300mm	2.19	0.14	4.00
STEP 3	Cavity walls no cavity insulation	1.55	0.14	4.00
STEP 4	Cavity walls with cavity insulation	0.60	0.14	4.00
STEP 5	Windows double glazed UPVC frames	0.60	0.14	2.00

Heat Demand - kWh

Human behaviour

Human behaviour is a major influence on consumption

- Use controls proactively to provide comfort levels of heat only when needed; timers, thermostats, radiator valves
- Close doors when temperature differences exist e.g. rooms not in use
- Switch appliances and lighting off, not to stand-by, when not in use
- When replacing appliances & lights buy the most efficient available

Smart meters are not controls

- They enable you to see when you're using the most energy
- They enable you to know how much it's costing you.
- This means you can adapt your energy use and cut down on waste
- It can help you prioritise your purchases

1930's House

- Total annual energy bill typically £1,030
- Total carbon emissions: 6.2 tonnes
- Space Heating 3.7 tonnes
- Hot Water 1.0 tonne
- Heating: 75% of total

New Build Semi-detached

- Typical annual energy bill is £590
- Total carbon emissions: 2.8 tonnes
- Space heating: 0.75 tonnes
- Hot water: 0.55 tonnes
- Heating 50% of total

SUMMARY PART 1

Summary statement

- Select efficient equipment
- Prevent waste ~ insulation and ventilation
- Behavioural influences
- Management and control
- Choosing an alternative supplier

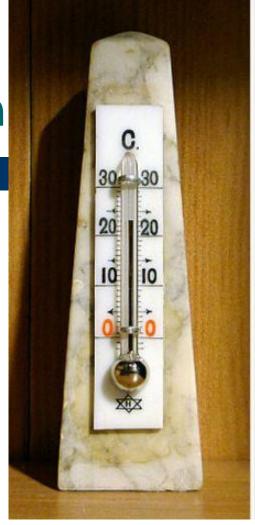
ENERGY EFFICIENCY in THE HOME

Alan Draper ADAPT Energy Team

Energy Controls in the home

Andy Hannah ADAPT Energy Team

Controlling energy in the home


- More than half the energy use in a typical home is for heating and hot water
- Greatest potential for energy wastage
- Recent technological advances mean that there is an energy efficient control solution which is right for everyone.

The quickest win – Don't set your controls too high

- Set to the lowest comfortable setting
- Usually 18-21 degrees C.
- Typical saving by turning down 1 degree...

£80-£85 / year*

(* Energy Saving Trust)

Don't heat when you don't need

• Applies to both heating and hot water

Have the right equipment to allow you to control....

What's the best system for heating controls?

- There is no single best system for everyone!
- To find the best system for you, you must consider
 - How you use the house
 - How your lifestyle pattern affects your need for heating and hot water
 - How automatic do you want the control of energy to be

ADAPT

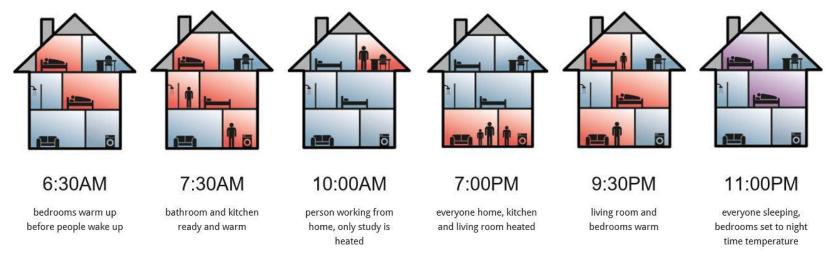
• First decide what you need and want, then find a system that does that.

The basics of building controls

- Three main types of building controls:
 - Time

- Condition (temperature)

- Occupancy


Levels of time and temperature controls for heating

- Whole house control
 - Boiler thermostat and timer
 - Room thermostat and programmer
- Zoning controls (single heating circuit)
 - Temperature -- TRVs (thermostatic radiator valves)
 - Time Programmable TRVs or

Wireless radiator control valves

Zone time control

Do you want central time control of individual rooms?



ADAPT

Illustration courtesy of Heat Genius.

Levels of automation

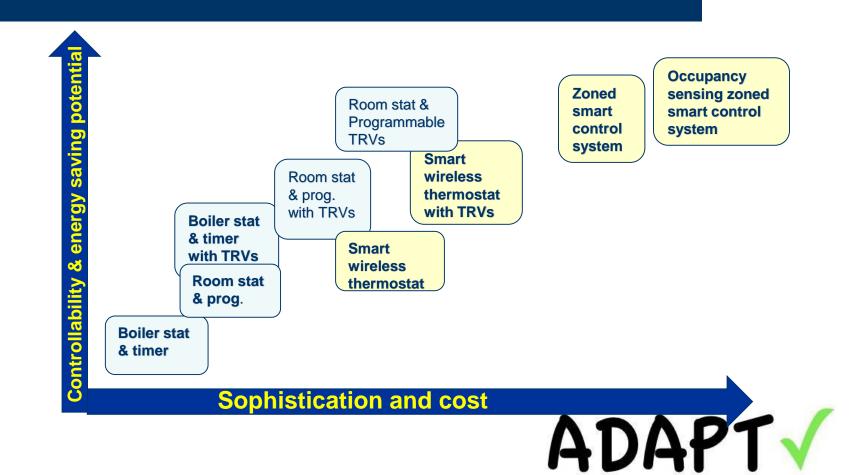
- Manual setting of everything
- Central programming
- Phone / computer setting
 - "The Internet of Things"!

Occupancy sensing controls

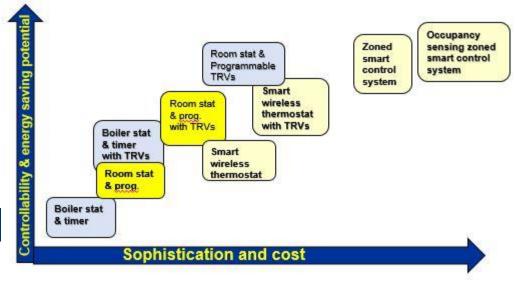
- Would we prefer not to be adjusting the time settings all the time?
- What if we prefer the system to heat only when we are going to be there?
- Occupancy sensing controls
 - Room sensors
 - Phone GPS signal (needs reliable phone signal!)

So, what is the right system for me??

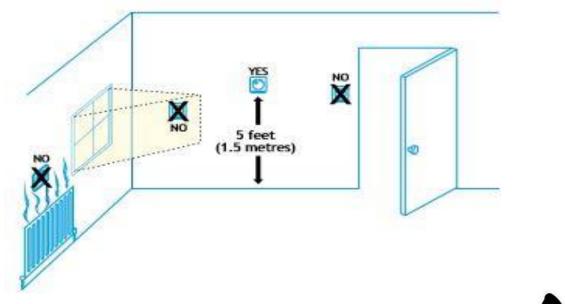
• It depends how we use our home....

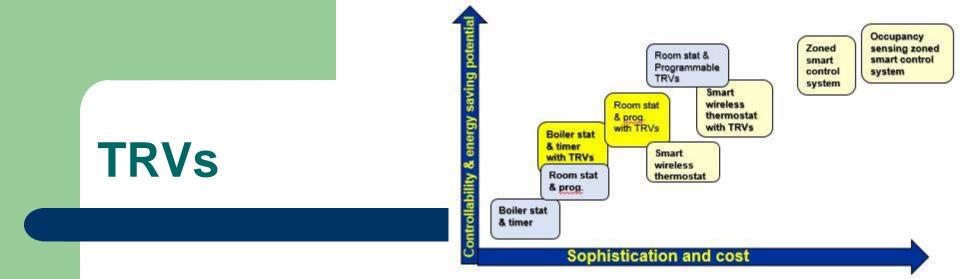


How do we use our home?

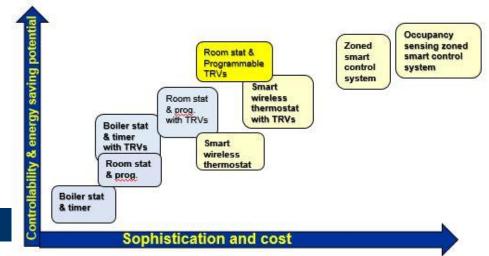

- Does the pattern of heating vary by day of the week?
 - If so, programming capability
- Do some rooms get hotter than others?
 - TRVs
- Are there large areas of the home which don't require full heating for long periods?
 - TRVs
- Do you occupy only part of the home during the day, but different areas at different times?

- Programmable TRVs or Smart zone time controls
- How consistent is the pattern?
 - If very inconsistent, possibly controls by occupancy
- Do you need to make changes often or when away from the home?
 - 'Smart' thermostats and controllers

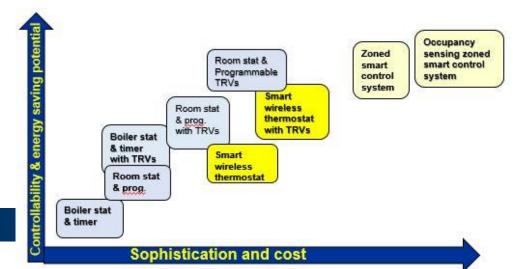

The market for building controls


Room thermostats

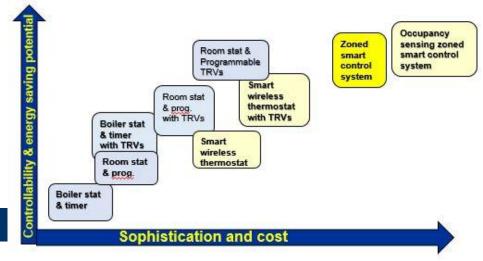
Locate them correctly


Set them correctly (18-21 deg) ADAPT

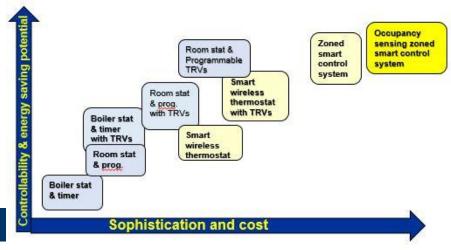
- Much more robust than they used to be.
- Cheap (less than £20)
- Very effective at balancing temperature between rooms
- Most effective if you calibrate the settings to room temperature with a digital thermometer (less than £25)
- Allows different temperatures to be maintained in different rooms


Programmable TRVs

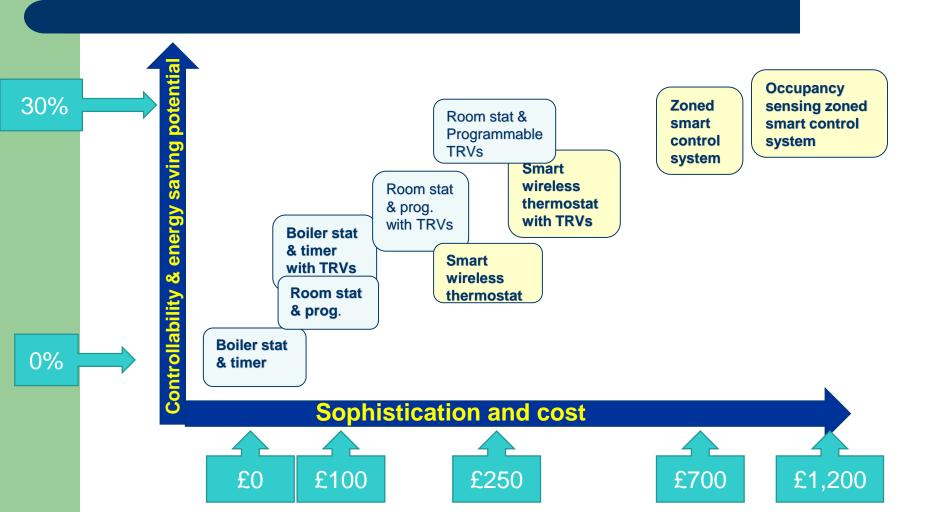
- Individual room time control
- Not centralised
- Can be fiddly to set up
- Not great if frequent changes are required
- Cheap with good savings potential


Smart wireless thermostats

- e.g Nest, Hive, Tado etc
- About £200 to £250
- All smartphone based
- Probably the ultimate system for smaller homes
- Capabilities vary considerably
- Great for adjusting away from home
- Some can learn occupancy pattern
- Self learning of occupancy can avoid frequent reprogramming
- Links to other functions
 - Lighting controls, Security, Smoke alarm, Plug in devices
- Some claim to be multi-zone, but rely on the plumbing already being zoned


Smart zone control systems

- e.g. Honeywell Evohome, Heat Genius etc.
- Provides the next level of energy efficiency
- Good for larger, more sparsely populated homes
- Quite expensive
- Honeywell version can be operated as a standalone controller without phone / computer interface
- All can be smartphone operated


Occupancy sensing smart zone control

- e.g. Heat Genius
- Like smart zone control, but with occupancy sensing and learning capability.
- Most expensive but most sophisticated.
- Most useful in homes with sparse but variable occupancy.

	il see S	
1	111 111 111 111 111 111 111 111 111 11	۲
-		
No.	Support Support	
24-1		-
and a	interesting and interesting	and the state of the
		-
	and the second	

Costs and Savings

Conclusions on heating controls

- Set to the lowest comfortable temperature (usually 18-21 degrees)
- Only heat when you need
- Choose the system that suits your home and how you use it.
- Carefully research the capabilities of 'smart' products, and choose the features important to you.
- Savings will depend on your starting point, but the investment in improved control should pay back.

Controlling hot water

- Always have a control thermostat
- Set at 60-65 degrees C
- A well insulated water tank loses temperature quite slowly
- For constant hot water when you need it, have the hot water heating enabled during the hours of use
- Switch it off outside of the hours of use
- Heating programmers and smart controllers can help with this.

- Assess usage pattern to establish:
 - How simple or complicated this is
 - Whether the pattern varies a lot

What about lighting and appliance controls?

- For money saving, probably best done manually
- Smart lighting systems and control of plug in devices are an established part of 'The Internet of Things'

- More about convenience / gadgetry than energy saving
- ADAPT's next talk showcases the exciting opportunities in LED lighting and electrical appliances

Controlling your energy use

Andy Hannah ADAPT Energy Team

BUYING ENERGY WISELY

Chris Knibbs ADAPT Energy Team

Which Energy

- Wood
- Coal
- Gas
- LPG
- Oil
- Electricity

Wood

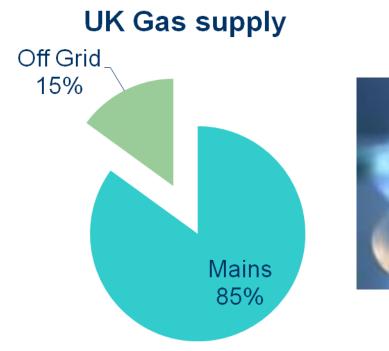
- Condition
- How much per load??
- What is a load??
- Which wood is best??
- How to store

Wood Tips

- When buying check that it has been stored undercover for at least 6 months
- Buy hardwood
- Guide Price is £75 per 1 Cubic metre bag
- Internal moisture content maximum of 20%
- Store wood bark side down -protect
- Oak takes 2 years to dry out

Coal

- Local Suppliers or Local Coal
- Open Fires vs Multifuel Stoves
- Smokeless or not
- 20kg-25kg bags
- Buy per kg
- House Coal 25p/kg
- Smokeless 30p/kg


Coal

• Welsh Anthracite 34p/kg

Gas 4Million UK Households –Off Grid

Gas

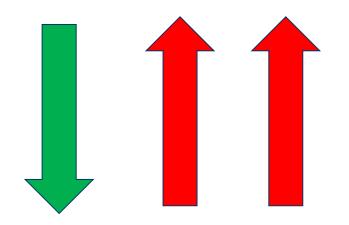
- Mains Gas see Dual Tariff with Electricity
- Propane Red 47kg Cylinders or bulk supply

- Many suppliers who deliver locally.
- Calor, Avanti, Flogas

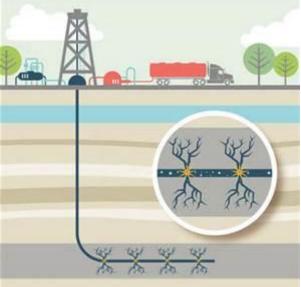
Gas

Gas Tips 47kg Cylinder:

- £40-45 Refill swap in Telford
- Buy Refill adapter £33 Take bottle to Autogas pump & refill for £44
- Delivered refills from £59
- Delivered new cylinder from £60
- Ring round for best price from Calor, Avanti, Flogas agents

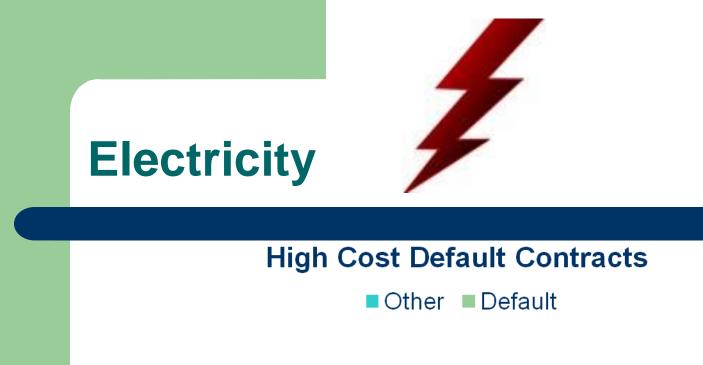

LPG Tips

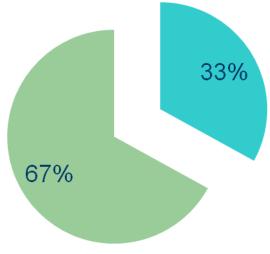
- For Heating & Cooking, Tanks installed free
- Calor, Avanti, Flogas Contracts for Bulk Tanks
- Tied into 2 year contracts
- Switch every 2 years
- 35p/litre best rate



Oil

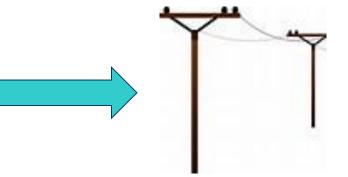
• Where is the price going?





Oil

- Oil Baron Syndicate
- 800 local customers order a minimum of 500 litres.
- £12 annual service charge
- Savings £ 20 per delivery are claimed
- Boilerjuice.com comparison check
- Caters for Computer illiterates



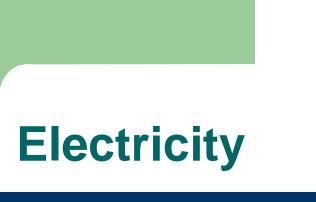
Electricity

- Big Six suppliers monopoly
- British Gas, Npower, SSE, Scottish Power,
- E-on, EDF

Electricity

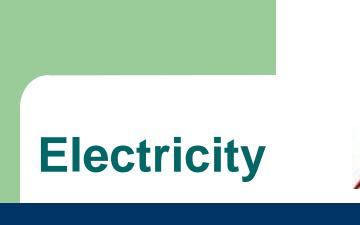
- 90% of domestic market
- Profits increased 10 fold.
- Plenty of alternative suppliers

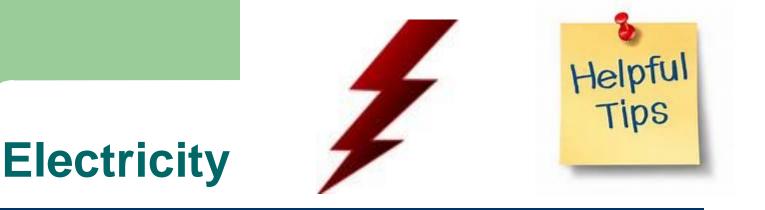
Big 6 90% ADAPT


Big Six Monopoly

Others

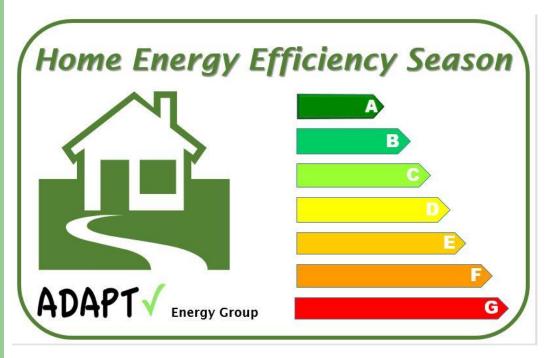
10%


- How to change
- Find your last Electricity bill
- Use All of the comparison sites
- Fixed or Variable Rates
- Contract or no contract

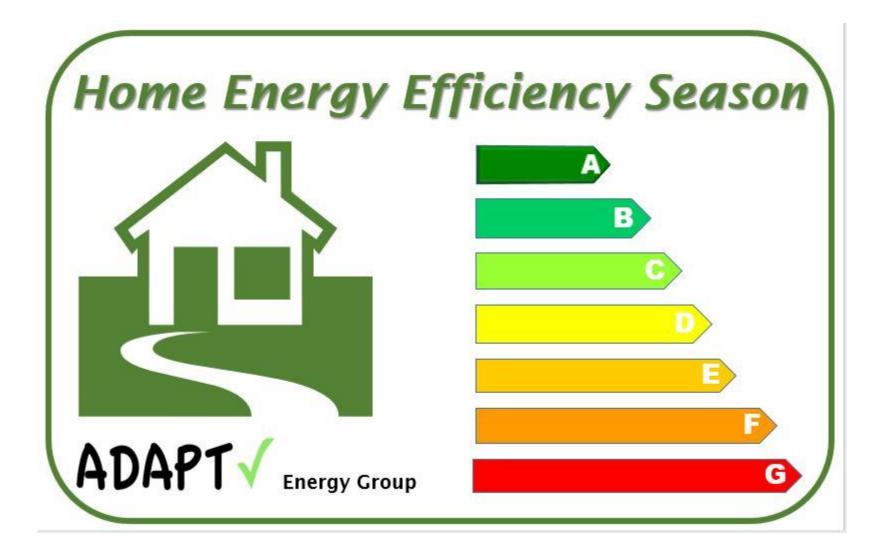

- Standard meter, Smart meter or pre-pay meter
- Smart meters are coming, UK Gov wants 80% of households fitted by 2020
- Don't work well in rural areas
- Come with energy monitors
- Use them to reduce energy consumption

- Best Standard Meter rates
- Unit Rates 10.69p. Per KWh
- Standing Charge 17.69p Per Day
- TCR 12.44p (Tariff Comparison Rate)
- Renewable Options from 15.3% higher

- If you were in credit with your previous supplier, ensure you are repaid.
- Diarise your energy supply anniversary.
- If you have a contract, & supplier raises prices— have option to move supplier at no cost.
- Solar contracts not affected by switch
- Switching is easy


BUYING ENERGY WISELY

Chris Knibbs ADAPT Energy Team



Next time.... 15 November 2016 Event 2 – Appliances and LED lighting

- Appliances– Chris Knibbs
- LED lighting Andy Hannah

Scout & Guide Hall 19.45

